(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
h(x, c(y, z)) → h(c(s(y), x), z)
h(c(s(x), c(s(0), y)), z) → h(y, c(s(0), c(x, z)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
h(x, c(y, z)) →+ h(c(s(y), x), z)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [z / c(y, z)].
The result substitution is [x / c(s(y), x)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
h(x, c(y, z)) → h(c(s(y), x), z)
h(c(s(x), c(s(0'), y)), z) → h(y, c(s(0'), c(x, z)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
h(x, c(y, z)) → h(c(s(y), x), z)
h(c(s(x), c(s(0'), y)), z) → h(y, c(s(0'), c(x, z)))
Types:
h :: c → c → h
c :: s:0' → c → c
s :: s:0' → s:0'
0' :: s:0'
hole_h1_0 :: h
hole_c2_0 :: c
hole_s:0'3_0 :: s:0'
gen_c4_0 :: Nat → c
gen_s:0'5_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
h
(8) Obligation:
TRS:
Rules:
h(
x,
c(
y,
z)) →
h(
c(
s(
y),
x),
z)
h(
c(
s(
x),
c(
s(
0'),
y)),
z) →
h(
y,
c(
s(
0'),
c(
x,
z)))
Types:
h :: c → c → h
c :: s:0' → c → c
s :: s:0' → s:0'
0' :: s:0'
hole_h1_0 :: h
hole_c2_0 :: c
hole_s:0'3_0 :: s:0'
gen_c4_0 :: Nat → c
gen_s:0'5_0 :: Nat → s:0'
Generator Equations:
gen_c4_0(0) ⇔ hole_c2_0
gen_c4_0(+(x, 1)) ⇔ c(0', gen_c4_0(x))
gen_s:0'5_0(0) ⇔ 0'
gen_s:0'5_0(+(x, 1)) ⇔ s(gen_s:0'5_0(x))
The following defined symbols remain to be analysed:
h
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol h.
(10) Obligation:
TRS:
Rules:
h(
x,
c(
y,
z)) →
h(
c(
s(
y),
x),
z)
h(
c(
s(
x),
c(
s(
0'),
y)),
z) →
h(
y,
c(
s(
0'),
c(
x,
z)))
Types:
h :: c → c → h
c :: s:0' → c → c
s :: s:0' → s:0'
0' :: s:0'
hole_h1_0 :: h
hole_c2_0 :: c
hole_s:0'3_0 :: s:0'
gen_c4_0 :: Nat → c
gen_s:0'5_0 :: Nat → s:0'
Generator Equations:
gen_c4_0(0) ⇔ hole_c2_0
gen_c4_0(+(x, 1)) ⇔ c(0', gen_c4_0(x))
gen_s:0'5_0(0) ⇔ 0'
gen_s:0'5_0(+(x, 1)) ⇔ s(gen_s:0'5_0(x))
No more defined symbols left to analyse.